End-Shape Analysis for Automatic Segmentation of Arabic Handwritten Texts
نویسندگان
چکیده
complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Word segmentation is an important task for many methods that are related to document understanding especially word spotting and word recognition. Several approaches of word segmentation have been proposed for Latin-based languages while a few of them have been introduced for Arabic texts. The fact that Arabic writing is cursive by nature and unconstrained with no clear boundaries between the words makes the processing of Arabic handwritten text a more challenging problem. In this thesis, the design and implementation of an End-Shape Letter (ESL) based segmentation system for Arabic handwritten text is presented. This incorporates four novel aspects: (i) removal of secondary components, (ii) baseline estimation, (iii) ESL recognition, and (iv) the creation of a new off-line CENPARMI ESL database. Arabic texts include small connected components, also called secondary components. Removing these components can improve the performance of several systems such as baseline estimation. Thus, a robust method to remove secondary components that takes into consideration the challenges in the Arabic handwriting is introduced. The methods reconstruct the image based on some criteria. The results of this method were subsequently compared with those of two other methods that used the same database. The results show that the proposed method is effective. Baseline estimation is a challenging task for Arabic texts since it includes ligature, overlapping, and secondary components. Therefore, we propose a learning-based approach that iv addresses these challenges. Our method analyzes the image and extracts baseline dependent features. Then, the baseline is estimated using a classifier. Algorithms dealing with text segmentation usually analyze the gaps between connected components. These algorithms are based on metric calculation, finding threshold, and/or gap classification. We use two well-known metrics: bounding box and convex hull to test metric-based method on Arabic handwritten texts, and to include this technique in our approach. To determine the threshold, an unsupervised learning approach, known as the Gaussian Mixture Model, is used. Our ESL-based segmentation approach extracts the final letter of a word using rule-based technique and recognizes these letters using the implemented ESL classifier. To demonstrate the benefit of text segmentation, a holistic word spotting system is implemented. For this system, a word recognition system is implemented. A series of experiments with different sets of features are conducted. The system shows promising results. our office assistant, Ms. Marleah Blom, for …
منابع مشابه
Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملRegion growing based segmentation algorithm for typewritten and handwritten text recognition
This paper presents a new technique of high accuracy to recognize both typewritten and handwritten English and Arabic texts without thinning. After segmenting the text into lines (horizontal segmentation) and the lines into words, it separates the word into its letters. Separating a text line (row) into words and a word into letters is performed by using the region growing technique (implicit s...
متن کاملComponent-based Segmentation of Words from Handwritten Arabic Text
Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words se...
متن کاملOffline Automatic Segmentation based Recognition of Handwritten Arabic Words
The world heritage of handwritten Arabic documents is huge however only manual indexing and retrieval techniques of the content of these documents are available. To facilitate an automatic retrieval of such handwritten Arabic document, a number of automatic recognition systems for handwritten Arabic words have been proposed. Nevertheless, these systems suffer from low recognition accuracy due t...
متن کاملSegmentation of Handwritten and Printed Arabic Documents
on this paper, we proposed a new text line segmentation of handwritten and typewriting Arabic document images that uses the Outer Isothetic Cover (OIC) algorithm of a digital object. In the first step, we use this method to segment the composed document into text blocs. In the second step, for each text bloc we will extract the text lines. Finally, line text will be segmented into words or into...
متن کامل